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INTRODUCTION

In the last ten years, the question of uniqueness of best L 1

approximation of continuous functions has been widely investigated. The
increasing research activity in this area was inspired by the fact that uni
queness of best LJ-approximation of continuous functions imposes less
restrictions on the approximating family than in the case of Chebyshev
approximation. In the present paper we shall consider the problem of
characterizing those subspaces of continuous functions which guarantee
unicity of best LJ-approximation with respect to all positive weights. This
problem will be studied in the general context of Banach space valued
functions. Some applications of the main results will also be discused.

Notation. Let K be a compact subset of [R" (n? 1) such that K = Int K
and l1(int K) > 0, where 11( ... ) denotes the Lebesgue measure in [R". Further
more, let X be a real Banach space with norm 11·11 x' W denotes
the set of all measurable real functions (j) on K such that
O<inf{w(x):xEK}~sup{w(x):xEK}<XJ.Consider the space C(K,X)
of continuous functions f: K -> X. Given a weight OJ E W we introduce the
norm

Ilfll", = Lw(x) Ilf(x)llx dl1 (fE C(K, X))

and denote by C,(K, X) the space C(K, X) endowed with the above norm.
Let now M be a finite-dimensional subspace of C,jK, X). As usual we

say that p EM is a best approximant of f E C",(K, X) if and only if
Ilf~pll",=inf{llf-qll",:qEM}. In the present paper we shall study the
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UlllClty of best approximation in Cw(K, X). The existence of best
approximants follows immediately since M is finite-dimensional. The sub
space M is called a Chebyshev subspace of Cw(K, X) if each f E C",(K, X)
has a unique best approximant in M. Let us denote by

rx(u,v)= lim Ilu+tvllx-llullx
t -- 0 t

the left derivative of norm II· II x( u, v E X, u i= 0). It is well-known that this
limit always exists, the functional r x( u, .) is frequently used in
approximation theory.

We shall need the following characterization of best approximation
(see [15]). The element p E M is a best approximant off E C",(K, X) if and
only if for any q EM

f.. w(x)rx(f~p,q)(x)dw(f w(x)llq(x)llxdp. (1)
KJ(j 1') Z(f 1')

Here and throughout the paper Z(g)= {XEK: g(x)=O}.

GENERAL THEORY

In this section we shall give some general theorems on unicity of best
approximation in C",(K, X).

Given the linear subspace Me C(K, X) we set M* = {q* E C(K, X): there
exists q EM such that for each x E K either q*(x) = q(x) or q*(x) = -q(x)}.
This notation originates from [11]. The next theorem gives a useful criteria
for Chebyshev subspaces in C",(K, X). For the case when X = [P; it was
proved by Strauss [12]. In [4] we verified it for X = [p;k endowed with the
Euclidean norm.

THEOREM I. Let M be a finite dimensional subspace of C",(K, X), OJ E W.
Then in order that M be a Chebyshev subspace of C",(K, X) it is necessary
that no q* E M*\ {O} has 0 as a best approximant in M. Moreover, if the
Banach space X is strictly convex then this condition is also sufficient.

Proof Let us verify the necessity. If 0 is a best approximant of some
q* E M*\ {O} then (1) holds with f = q* and p = O. Furthermore there exists
a qEM\{O} such that q*(x)=y(x)q(x) where y(x) is either 1 or -1
(x E K). Evidently, we have Z(q* + bq) = Z(q*) if -1 < b < I. Moreover,
since r Aau, v) = r Au, v) for any u, v E X, u i= 0 and a > 0 it follows that for
any xEK\Z(q*), and qEM rx(q*+bq,q)(x)=rA(y+b)q,q)(x)=
rAq*,q)(x). Thus by (1) -bqEM\{O} is a best approximant ofq*, as
well.
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Let us prove now that if X is strictly convex then the condition of
theorem is sufficient. Assume that f E C",(K, X) has two different best
approximants PI' P2 E M. Then (PI +P2)/2 is also a best approximant,
hence almost everywhere at K

(2)

holds. By continuity of the functions involved and the relation K = Int K
we obtain that (2) holds for each x E K. Now using the strict convexity of X
we can conclude that for every x E K either one of the quantities (f- PI)(X)
and (f-P2)(X) is zero or (f-PI)(X)=C(f-P2)(X), where c=
c(X)EIR\{O}. Then settingf*(x)=f(x)-(PI(x)+P2(x))/2 we obtain that
for any x E K\Z(PI - P2)

I*(x) = Y(X)(PI - P2)(X), (3 )

where ";(x) is a real constant. Moreover (2) implies that Z(f*) c

Z(PI - P2), hence y(x) # 0 if x E K\ Z(PI - P2). Let us consider p* given by

*(x) = li(PI - P2)(x)li x l*(x)
P lif*(x)11 x .

if xEK\Z(f*) and p*(x)=O for xEZ(f*). Since p* is continuous at
K\Z(f*) and Z(f*) c Z(PI - P2) it follows that p* E C(K, X). Moreover
by (3) for XE K\Z(PI - P2) we have p*(x) = (PI - P2)(X) sign y(x). Thus
p*EM*\{O}. Furthermore, using again (3) we have for any qEM and
xEK\Z(PI-P2)

r x(f*, q)(x) = r X(Y(PI - P2), q)(x) = r x(p*, q)(x). (4)

Finally, taking into account that a is a best approximant of f* in M we
derive by (1) and (4) that for each q E M

LZIP') mIx) rx(p*, q)(x) dj1

=f. m(x)rxlf*,q)(x)dj1
K\Z(p*1

~ f . w(x) rxlf*, q)(x) dj1 + f. .. . w(x)lrxlf*, q)(x)1 dj1
K\ZU') Zip')·ZU')

~ tJ*) w(x)llq(x)11 x dj1 + LIP') Z(f*1 w(x)llq(x)11 x dj1

= f w(x)llq(x)llx dj1.
Z(p')
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(In the last inequality we have used the obvious relation ITx(U, v)I:(; Ilvll x,
u, v E X, U =I- 0.) Thus 0 is a best approximant of p* E M*\ {O}. The proof of
the theorem is completed.

Theorem 1 reduces the study of Lt-approximation of functions in
C",(K, X) to M* but it is not very convenient for concrete applications. We
shall now introduce an Lt-norm independent property of M which turns
out to be very useful in the study of the uniqueness of Lt-approximation.

DEFINITION. The finite dimensional subspace Me C(K, X) is called an
A-space (or is said to satisfy the A -property) iffor any p* E M*\ {O} there
exists apE M such that

(i) p=O a.e. on Z(p*)

(ii) Tx(P*, p)(x);:: 0 a.e. at K\Z(p*) and

this inequality is strict on a subset of K\ Z(p*) of positive measure.

The notation of A-spaces in the case when X = IR, K = [a, h] first
appeared in a paper by Strauss [11], who attributes it to an oral com
munication of DeVore.

Strauss [11], in the above case, also proved this next result which is an
easy consequence of Theorem 1 and the above definition.

THEOREM 2. Let X he a strictly convex Banach space and assume that M
is an A-suhspace of C(K, X). Then M is a Chehyshev suhspace of C,jK, X)
f()r every OJ E W.

Proof: If our claim fails to hold for some W E W then by Theorem 1
there exists a p* E M*\ {O} such that

L Z{p*) w(x) Tx(P*, q)(x) d/l:(; L{p*) w(x)llq(x)11 x d/l

for any q E M. On the other hand the A-property of M ensures the
existence of apE M for which the left side of the above inequality is strictly
positive while the right side is O.

Thus by Theorem 2 if X is strictly convex then the A-property implies
that uniqueness holds with respect to each weight OJ E W. It turns out that
assuming that X is smooth this statement can be reversed. Recall that X is
smooth if at every point of its unit sphere there exists a unique tangent
functional. It is known that in this case TAu, . ) is a linear functional.

THEOREM 3. Let X he a smooth Banach space and assume that M is
a Chebyshev subspace of C",(K, X) for each OJ E W. Then M satisfies the
A-property.
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Proof It follows by Theorem 1 and (1) that for any q* E M*\ {O} and
WE W there exists q E M for which

I' w(x) Tt(q*, q)(x) dfl > J w(x)llq(x)11 x dfl· (5)
"K'/(ll*) /((1*)

Let q*EM*\,[O} be given and set M={qEM: q=O a.e. on Z(q*)}.
Evidently, M is a nonempty linear subspace of M.

Our main goal is to prove the following:

Claim. There exists a qo EM such that

J.. w(x) !x(q*, qo)(x) d/l i= 0
K\7({/* J

(6)

for any (J) E W.
Assume that our claim is false, i.e., for any q EM we can find an WE W

satisfying

J' w(x) !x(q*, q)(x) dfl =0.
K 7.('1*1

(7)

Let dim ,ff = k, k ~ 1, and let ql'"'' qk be a basis in M. It is well known
that in a smooth Banach space X the functional <p( v) = ! x( u, v) is linear
for any fixed U E X, u i= O. Therefore it follows by (7) that for any
E= (hi ,... , hk ) E [p;k there exists an WE W such that

0=1 W(X)!x(q*,i. h,qi)(X)dfl
,)A .. /(q*) l=l

k ,

= I hi J. w(x) !x(q*, qi)(X) dfl·
,~ I K.7.lq*)

Consider the set

Ao={(f
K

. * W(X) Tx(q*, q,)(X)dfl)k :WEW}.
7.(q ) I ~ t

(8)

Obviously, A o is a convex subset of [p;k. Moreover by (8), Ao has nonempty
intersection with any hyperplane H(E) = {ii E [p;': <ii, E) = o}, E E [p;k( <', .)
denotes the usual inner product in [p;k). Assume that A o is an r-dimensional
convex subset of [p;k. Let us prove that {j E Ao. If r = 0 this holds trivially
hence we may assume that 1 ~ r ~ k. Since {j is a cluster point of Ao we can
conclude that A o contains r linearly independent vectors, i.e., for some
wt, ..·,WrEW



CHEBYSHEV SUBSPACES

I ~j~r,

103

are linearly independent. We state that Ao is an open subset of the flat F, =

span{T
"

... , T,]. Consider an arbitrary rEAo, i.e., for some W,E W

(~= (c;)7~ I = (r", . w,(x) T\(q*, q,)(x) dfly
"'/\ ,Z({! I / I 1

(9)

Evidently, if we choose h > 0 to be small enough then WI ±hw, E W

(j = 1,. .. , r). Therefore

rii.;'=(! (w,+}'hw)(x),x(q*,q;)(X)dfl)k EA o (10)
"'K,Z(q*) l-~ I

for any I ~ j ~ rand }' = ± 1. Furthermore, by (9) and (10)

ri, =(~+"hT,(1 </'<r "= +1)f,,' I I -.....:::. -.....::: ~ I - ' (11 )

Moreover convexity of A° implies that for any, I; ~ 0 (I ~ j ~ r, }' = ± I)
such that I;~ I'll + I; 1'1 1=1 we have by (II)

I" I r

I'll j 1.1 + I '/. I j /. I = i + h I (, I. I - , I. I) T,E Ao·
1 I 1- I 1 I

This and linear independence of Ti' I ~ j ~ r, yield that A° contains an
r-dimensional ball with center at r. Thus Ao is an open convex subset of F,.
If 0 i Ao then 0 E BdA o, and there exists a hyperplane Fin F, supporting Ao
at O. Since A° intersects any hyperplane H(n) = {il E IRk: <ii, li) = 0] it
should intersect F, as well. But this contradicts the fact that A° is open in
F,. Therefore 0 should necessarily belong to Ao, i.e., for some WE: W

f" 6)(x)T,(q*,q,)(x)dfl=0(I~i~k).
K L(,,'I

This and linearity of Tl((lI,') (li ""0) imply that

J' 6)(x) T,(q*, q)(x) dfl = 0,
K\,Z(ll*)

qEM. ( 12)

Let now ql ,... , q" be a basis in M, where as above ql ,... , qk (k ~ n) is a basis
in M and set M' = span {q k + I, ... , q,,}. Consider the functionals

IJJ(q)=! Ilq(x)llxdfl,
"'Z(ll*)

1J2(q) = sup Ilq(x)11 x'
X:EK

qEM'.
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Obviously, '12( q) is a norm on M'. Moreover, since IJ I (q) > 0 for
qEM'\[O}, IJI(q) is a norm on M', too. By the equivalence of norms in
finite dimensional spaces we obtain that there exists a positive constant ~

independent of q E M ' such that IJ 2( q) ~ 'II (q) ~ for every q E M'. Consider
now the weight w* E W given by

IW(X,')' XEK\Z(q*)
w*(x)=

~SUP(V(X1fl(K), XEZ(q*).
\-F ,....

Then by (12) and linearity of T\-functional for any q = qI +q2 EM, where
ql E M, ill EM', we have

L 7(,,*1 w*(x) Tx(q*, q)(x) dfl

= I, cv(x) Tx(q*, (2)(X) dfl
'" 7(,,*)

~ sup CV(X) fl(K) '12(Q2) ~ ~ sup cv(x) fl(K) IJI(ih)
\-F K \- E~ K

= I' w*(x)IIQ2(X)11 x dfl = r w*(x)llq(x)11 x dfl·
~-/19*) -'/((/*1

But this contradicts (5).
By this contradiction we obtain that our claim is true, i.e., there exists a

qo EM satisfying (6) for all WE W. This implies that either T ;:(q*, qo) ~ 0
a.e. on K\Z(q*) or T\'(q*, qo)~O a.e. on K\Z(q*). Indeed, if we assume
that the sets

5, = [x E K\Z(q*): (~1)' T\(q*, qo)(x) > O},

have both positive measures then

i = 1,2,

r

(~l)' I T\(q*,qo)(x)dfl>O
'S,

(i = I, 21·

Choosing c: > 0 to be sufficiently small and setting for i = I, 2

we obtain

{
I,

w;(x) =
[-;,

XES;

XEK\S,

(~lvf W;(.\')Tx(q*,qo)(x1dfl>O
K ,Z(q*)

(i = 1,2). (13)
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Furthermore {Jw I + (I - In W 2 E W for any 0 ~ (J ~ I hence by (13) for some
0< (J* < I

But this contradicts (6). Thus we may assume without loss of generality by
linearity of Tx-functional that TAq*, q())(x) ~ 0 a.e. at K\ Z(q*) and by (6)
this inequality should be strict on a subset of K\ Z(q*) of positive measure.
In addition, q() E £1, i.e., q() = 0 a.e. Z(q*). Thus we have found an element
in M required by the A-property. The theorem is proved.

The next statement is an immediate consequence of Theorems 2 and 3.

COROLLARY I. Let X he a strictly convex smooth Banach space and let
M he a finite dimensional suhspace 01 C(K, X). Then in order that M he a
Chehyshev suhspace of C",(K, X) for all weights WE W it is necessary and
sutflcient that M satisfies the A-property.

In case when X = IT;£, K = [a, h] Theorem 3 was verified by the author
[5]. In an independent work Pinkus [10] gave another version of this
result for X = IT;£, K = [a, h]. Imposing a slight restriction on M, i.e.
.u(Z(q))=.u(Int Z(q)), VqEM he showed that the result remains true even
if only continuous weights are considered. It can be shown that with the
same restriction on M Theorem 3 also holds for any smooth Banach space
X, if we replace the set of measurable bounded weights by continuous
weights. Moreover, in case when X = IT;£, K = [a, h] we can improve the
theorem further considering only the set W f of positive infinitely differen
tiable weights at [a, h]. Let us outline the proof.

THEOREM 4. Let M he a finite dimensional suhspace of C( [a, h], IT;£) with
the property that .u(Z(q))=.u(Int Z(q))for any qEM. If M is a Chehyshev
suhspace oIC,,,([a, h], IT;£)for any WE W Y then M is an A-space.

Proof First of all let us note that Ta;l( u, v) = v sign u (u, V E IR, u i= 0).
The proof is identical to the proof of Theorem 3 until we get a weight
WE W' satisfying (12). The only properties of the set of weights W X

needed in this part of the proof are the following: (i) W X is a convex cone,
i.e., CWJ I + {Jw 2 E W 7 for any WI' W 2 E W X and a, (J > 0; (ii) for every
WI' W2 E W X we can choose a> 0, to be small enough so that
WI -aw 2 E W X

• Furthermore we again let ql ,... , q" be a basis in M such
that ql, ... ,qk (k~n) is a basis of M and we set M'=span {qk+I, ...,q,J.
Evidently, no qEM'\{O} can vanish at Int Z(q*) since otherwise the
relation .u(Z(q*)) = .u(Int Z(q*)) would imply that q vanishes a.e. on
Z( q*). By a simple compactness argument we can derive the existence of a
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finite number of closed intervals [aj' [3J c lnt Z(q*) (1 ~j~s) such that
no q E M'\ {O} vanishes on all of them. Furthermore for any constant R > 0
we can construct W*E W" such that w*=(1) at [a,h]\Z(q*) and w*=R
at U;~ 1 [ai' [3J. This can be easily done.

The rest of the proof can now be completed following the proof of
Theorem 3.

EXAMPLE 1. Set X = IR~, where IR~ denotes the space IRk endowed with
the lp-norm Ilallp=(I7~llay)t;p (a=(at, ...,ak)ElRk ) and l<p<o~).

(Note that R~ is equivalent to 1[:). Then we have for u={u,}7ol' 1'=
f • 1 k ITllk -J- 0
(l/ I / I E""I',lI-r-

k

Tl;,(U, v) = liull~ I' I luY 1 1'/ sign u,
i-,-- I

= Ilull}, p I IllY I T II!(lI" v,).
II I TO

This relation immediately implies that if M I, ... , M k C C( K, IR) are A-spaces
then their Cartesian product

is an A-space in C(K, IR~), i.e., it is Chebyshev in C",(K, IR~) for all WE W.
(Weaker versions of this result can be found in [3] and [4].)

It was proved by Havinson [2] that if Me C( [a, h], IR) is a Chebyshev
subspace of C/J[a, h], IR) for each WE Wand clements of M do not vanish
on intervals then M is a Haar space at (a, h), i.e., each q E M\ {O} has at
most dim M - 1 zeros at (a, h). (This result can be also deducted from the
necessity of the A-property, see [5].) We shall give now the analogue of
this statement in the general case.

Consider I g E C(K, X). Let us say that I is locally orthogonal to g, writ
ten I 1- loc g, if r,Jf; g) = 0 a.e. at a nonempty open subset of K\Z(f). If
Tx(I g) = 0 a.e. on the whole set K\ Z(f) then we say that f is orthogonal
to g, writtenl1-g. (Note that if X is smooth then Tx(U, v) = 0 is equivalent
to Birkhoff orthogonality of U to v.) As usual an open set (I c K is called
r-disconnected if it is a union of I' disjoint open sets.

THEOREM 5. Let M, dim M = m, he a linear suhlpace ol C(K, X), where
X is a smooth Banach space. Assume that for any q I' (12 E M\ {O) the
relation ql 1- loc q2 implies qt1-q2' Then if M is a Chebyshev suh~pa('e ol
C",(K, X) for all WE W it follows that K\Z(q) is at most m-disconnectedfor
any q E M\ {O}.
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Proof Assume that in contrary for some q E M\ {O} we have
K\Z(q)= Ui~+/ Qj' where Qj~S are nonempty open disjoint sets. Let Nt
be the set of those elements ij in M for which r Aq, ij) = 0 a.e. at K\ Z(q).
The linearity of r y-functional implies that if is a linear subspace of M. Let
qi' I ~ i ~ m, be a basis in M such that qi' I ~ i ~ r (0 ~ r ~ m ~ I) is a basis
in if and set M 1 = span{ q,+ 1'"'' qlll}' Consider the (m - r) x (m + I)
matrix

{ }

' 1 j 111 + I

B(w)= t W (X)T'((q,qi)(X)d/1 111,;i"1II

Furthermore, denote by B* the set of all those (m - r) x (m + I) matrices
for which every (m - r) x (m - r) submatrix has nonzero determinant. It
can be easily shown that B* is a dense subset of [RIIII 11(111 I II. In [2J this
statement is proved for r = 0, the proof for any 0 ~ r ~ m - I is similar.
Assume that for some WE W we have B(w) E B*. Then the linear system of
equations

m-tl

I a jr w(x) T,(q, qi)(X) d/1 = 0
I~ 1 Q,

has solutions ajE[R\{O}, I ~j~m+ I. Set

*( {la/1w(x),X,"EQj'w x)=
I, XEZ(q),

w* E W, and

(r+l~i~m)

l~j~m+1

(14)

( 15)

{
q(X) sign aj'

q* =
0, XEZ(q).

(16)

Evidently, q* is continuous at K and q*(x) = ±q(x) for every x E K. Thus
q* E M*\ {O}. Moreover, using again the linearity of r x-functional we
obtain for XEQj and any r+ I ~i~m

sign ajrx(q, qJ(x) = T,(q, sign ajqi)(x) = rx(sign ajq, qJ(x).

Hence and by (15) and (16) we can rewrite (14) as

m+ I

0= I ajf w(x)rAq,q;)(x)d/1
j~ I Q,

m+ t

= I f w*(x) rAq*, q,)(x) d/1
j~ 1 Q,

= f w*(x) rAq*, qi)(X) d/1
K\ Z(q)

(r+ I ~i~m). (17)



108 ANDRAS KROO

Finally, using that rx(q*,qJ= ±rX(q,qi)=O a.e. at K\Z(q) for every
1 :( i:( r we can derive from (17) that

J w*(x)rx(q*,q)(x)dp=O,
K' /(q*(

qEM.

Thus M is not an A-space, which in view of Theorem 3 contradicts the
assumptions of our theorem. By this contradiction we obtain that the set
B = {B(w): WE W} has empty intersection with B*. Since B* is dense in
[RIm r((m + 1) and B is a convex subset of [R(m r)(m + 1) it follows that B has

empty interior, i.e., it belongs to hyperplane. Thus for some c i .j E [R (not all
of them zero) we have for every WE W

HI -+ 1 m

o=I . I cuI W(x) Ty(q,qJ(X) dfl
J = I 1= r I I Qf

111+ I ("

= I J w(x)rx(q,il,)(x)dp
I~ 1 Qi

where ili EM l' 1:( j:( In + I, and at least one of il
J

- s is nontrivial. This
latter relation yields that r x(q, ill) = 0 a.e. at Qp 1 :( j:( m + 1, i.e., if fL is
nontrivial then q -1 10c (/i' But by the assumption of the theorem this implies
that q-1qj' i.e., for some 1 :(j:(m+ I, iliEM\{O), a contradiction. The
theorem is proved.

COROLLARY 2. Let X he a smooth Banach space and let M be a finite
dimensional suhspace of C( [a, b J, X) such that for any q h q2 E M\ {O} the
relation ql -1 loc (12 implies q l J..q2, and no nontrivial element of M vanishes at
an interval. Then if M is a Chehyshev suhspace of C w ( [a, h J, X) for all
WE W it follows that M is a Haar space at (a, h).

Let us give an example of application of Theorem 5.
Set K=[a,hJ, X=C=R~. Note that for u, VEC (u#O), rdu,v)=

Revsignu, where signu=u/lul. Let M,,={L%~OCkeirkX:CkEC} where
0= ro < r l < ... < r" are integers.

It was shown by Havinson [2J (see also [7J for a more general
statement) that if rk=k, O:(k:(n, then M" is an A-subspace of
C([a,h],C) (0:(a<h:(2rr). Let us show that in order that M" be an
A-space it is necessary that M" be a Haar space at (a, h) (0:( a < h:( 2rr).
We need only check that M" satisfies the conditions of Corollary 2.
Evidently no element of ]oJ" vanishes at an interval. Furthermore, if for
some ql' Q2EM,,\{O} we have rdqhq2)(X)=O, a.e., at an interval then
Re q1(x) q2(X) = 0 at an interval. But Re q1 q2 is a real trigonometric
polynomial, i.e., Reqlq2 must be identically zero. Thus rdql,Q2)=0 at
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[a, b]\Z(qd. This means that Corollary 2 can be applied for M n . In par
ticular, we obtain that M n is an A-subspace of C( [0, 2rr J, iC) only if rk = k,
k= 1,..., n.

THE A-PROPERTY

In this last section we shall consider the question of existence and
characterization of A-spaces. This problem is well studied in the case when
K = [a, hJ, X = IP;, In this situation a classical example of an A-space is a
Haar space at (a, h), i.e., Theorem 2 gives the well-known Jackson-Krein
theorem. Some examples of Haar-type A-spaces in the case when
K=[a,hJ, X=iC(=IR~) were given by Kripke and Rivlin [3J, Havinson
[2J and the author [6]. In a series of papers by Strauss [12,13, 14J,
Galkin [1 J, Sommer [16 J and others it was shown that different families
of spline functions also satisfy the A-property if K = [a, hJ, X = IR (see also
[4 J for the case X = iC). Furthermore Sommer [18 J proved that A-spaces
satisfy the Weak Chebyshev property. These results raised the problem of
complete "identification" of the A-spaces. Recently, this problem was
solved in the case K= [a, hJ, X= IR by Pinkus [10]. The essence of his
result is that A-spaces are composed piecewise from Haar spaces, i.e., they
are generalized splines of a certain type.

Let us turn to the question of A-spaces of real valued functions of several
variables. Let us assume that K is in 1R 2 and X = IP;, The most natural
candidates for A-spaces seem to be algebraic polynomials Pn =

{LI t I,;; II aux)' ': au E IR}. It can be shown (see [8 J) that if K is convex than
PI is indeed an A-space. But, unfortunately, this turns out to be an excep
tion. It is an easy exercise to check that P,,, n? 2, does not satisfy the
A-property if K has nonempty interior in 1R 2

. Analogous remarks hold in
connection with the polynomials

if n, m? I.

Sommer [18 J pointed out that linear splines of two variables does not
satisfy the A-property, as well. Of course there can be given a trivial exam
ple of an A-space in C(K, IR), K c 1R 2

, of arbitrary dimension n simply by
considering a linear span of nonnegative functions with disjoint supports.
The above observations indicate that it is very probable that A-spaces of
real functions of several variables do not exist apart from some trivial
cases. Of course, the situation is different in the complex case, because, for
instance, algebraic polynomials satisfy the A-property.

Thus our approach which consisted in studying the uniqueness with
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respect to all weights is convenient for real functions of only one variable
and it seems to become very restrictive if we turn to real functions of
several variables. This, of course, does not mean that we can not have nice
Chebyshev subspaces with respect to a single weight in the real multivariate
case. In fact it was shown in [8 J that tensor products of Haar spaces of
arbitrary dimension with two-dimensional Haar spaces are Chebyshev in
C\(Ke, IR) if Ke is a rectangular region in IRe (here (1)= I). Thus, in par
ticular, P \.11I and PI/\ are Chebyshev subspaces of C I (K 2 , IR). On the other
hand P I •III and PI/.\ do not satisfy the A-property, i.e., they are not
Chebyshev with respect to some other weight. This is another illustration
of the fact that the A-property is not necessary in general for uniqueness
with respect to a single weight.

Finally we would like to conjecture that PI/m is a Chebyshev subspace of
C\(Ke , IR) for any 11, m,? 1. In [9J we proved a weaker result showing that
PI/m is Chebyshev in Pc C\(K2 , IR), where P= Ui,i Pi,i'

Remark. By the time the present paper was completed Professor
M, Sommer kindly sent the author a preprint in which he verified
Theorems I 3 of this paper in the case X = IR. Sommer also presents in his
preprint an interesting example of bivariate linear vertex splines which
satisfy the A-property.
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